
Reverse engineering of Windows drivers - A state
of the art

2nd Jean SEVAUX
CyberDéfense - ENSIBS

Vannes, France
sevaux.e1800010

Abstract—This research report seeks to highlight the major
risk posed by third-party drivers installed on the Microsoft
Windows operating system. In particular, the paper will focus on
device drivers, which are present on all computers, both personal
and professional. Indeed, a flawed development of such software
components poses serious problems, which Microsoft is trying to
address, for example with the Windows Driver Model (WDM),
the Windows Driver Framework (WDF) and Driver Verifier.
In response to these concerns, this study explores the landscape
of reverse engineering methodologies for Windows drivers. It
questions the effectiveness of Microsoft’s security measures for
drivers and the Windows kernel and investigates existing reverse
engineering automatic tools and techniques.
The starting point for this research is Popkorn, a tool developed
in parallel with a research paper [4], which automates the reverse
engineering of WDM drivers and the search for vulnerabilities in
critical functions, particularly those manipulating user-supplied
data. This study will use Popkron as a basis for further investi-
gation of device drivers’ vulnerabilities, expanding the research
to WDF drivers.

Index Terms—reverse engineering, methodologies, security,
drivers, Microsoft, Windows, kernel

I. INTRODUCTION

In the malware industry, attackers strive to gain ever greater
privileges on the victim’s system, while remaining as discreet
as possible. Fortunately for them, a critical component of
the operating system can enable them to do just that, it’s the
kernel drivers. This document presents the critical role of
device drivers in modern operating systems and the potential
security risks associated with their development. Device
drivers serve as vital intermediaries between applications
and hardware components, facilitating functions like GPU
access, BIOS updates, and network card management in the
Windows operating system. Due to the privileged nature of
these operations, drivers are loaded into the kernel at the
highest privilege level.

Drivers are created by device vendors using Microsoft’s
frameworks like the Windows Driver Model (WDM) and
the Windows Driver Framework (WDF). Unfortunately,
some vendors lack rigorous, security-focused development
processes, leading to vulnerabilities that can be exploited to
gain elevated privileges. To address these concerns, Microsoft
requires drivers to be signed by the Windows Hardware
Quality Labs (WHQL) and undergo Extended Validation

(EV) certification. However, this certification doesn’t involve
thorough code verification, relying on vendors to ensure their
drivers’ security adequately. Unfortunately, even certified
and signed drivers are not necessarily free of vulnerabilities.
Finally, a signed driver is not necessarily a proof of security,
as attackers can gain access to stolen certificates [12].

In light of the potential risks associated with drivers, it’s es-
sential to consider the broader context of reverse engineering.
This document follows an in-depth scientific study of reverse
engineering methodologies. The current landscape of reverse
engineering will be discussed, outlining the motivations for
this project and exploring various research issues in Section II
and Section IV, respectively. Section IV delves into the state of
the art, positioning our work in the existing landscape, while
Section V explains our group’s organization. Section VI then
presents the use of Popkorn, a tool reversing WDM drivers,
at the base of our work presented in Section VII.

II. BACKGROUND

A. Reverse engineering

First of all, the reverse engineering of a software com-
ponent is a process of analysing the operational version
of this component in order to reconstruct its technical and
functional specifications. Reverse engineering is used, among
other things, to re-document, convert, maintain or update old
applications.

B. Windows kernel driver

A driver is a specialized piece of software that acts as
an intermediary between the operating system and hardware
components. These drivers enable the OS to communicate
with various hardware devices, such as graphics cards,
network adapters, and storage controllers. They provide a
unified interface that applications running in user mode can
utilize to access the underlying hardware without needing
to understand the specifics of each device. Kernel drivers in
Windows bridge the gap between user-mode applications and
the kernel itself.

The kernel in Windows refers to the core component
of the operating system responsible for managing system
resources and providing essential services to applications and

An
on
ym
ize
d

An
on
ym
ize
d3rd Erwan FONDIN

CyberDéfense - ENSIBS
Vannes, France
fondin.e2101282

mailto:sevaux.e1800010@etud.univ-ubs.fr
mailto:fondin.e2101282@etud.univ-ubs.fr

other system components. It operates at the most privileged
level and plays a central role in maintaining system stability,
security, and resource allocation. The kernel handles tasks
like process management, memory management, and I/O
operations.

In order to standardize and define Windows drivers develop-
ment, Microsoft published the Windows Driver Model (WDM)
[16]. By following this standard, third-party drivers’ develop-
pers were sure that their code would be compatible with all
Microsoft Windows operating systems. Today, the standard has
evolved, as Microsoft has developed a framework for kernel
driver development, incorporating certain security measures:
the Windows Driver Framework (WDF) [14]. To emphasize
briefly WDM and WDF differences, WDM drivers interact
directly with the operating system and are trusted kernel-mode
components, which means the system provides limited checks
on driver input. On the other hand, the WDF model focuses on
the driver’s requirements, and the framework library handles
the majority of the interactions with the system, intercepts I/O
requests, takes default actions where appropriate, and invokes
the driver’s callbacks as required. The WDF model is object-
based and event-driven, providing a more structured and secure
approach compared to WDM drivers.

III. SUBJECT’S CHOICE MOTIVATION

Our team is made up of cyber defence engineers. In this
context, it was natural for us to turn our attention to a major
flaw in operating systems. We combined the knowledge and
skills of each of us, namely reverse engineering and tool
development, to look at the security of Windows drivers.
Research on this subject is crucial, and is of interest to
experts such as the DGA-MI, whose work brings them into
contact with it.

Drivers are essential components for the smooth running
of all information systems. Without them, communication
between devices, other components and the operating system
would be impossible. Drivers are therefore present on almost
all information systems, so it is imperative to ensure that they
are secure. One of the reasons for taking an interest in the
reverse engineering of peripheral drivers is the common and
specific structure shared by many drivers, particularly those
close to the kernel. This characteristic suggests that potential
security flaws could also be shared between different drivers,
thereby increasing the scope of vulnerabilities.

IV. STATE OF THE ART

Recent developments in the cybersecurity realm highlight
the importance of understanding and mitigating risks. A
group of hackers, known as SpyBot, has released a tool on
a Russian forum that can potentially disable any anti-virus
or threat detection and response (EDR/XDR) software. This
tool employs a technique referred to as ”Bring Your Own
Vulnerable Driver” (BYOVD), which involves introducing
a legitimate signed driver onto the victim’s computer. This

driver can then be exploited to undermine the victim’s security
solutions, as detailed in [17]. These incidents underscore the
critical need for robust security measures in both hardware
and software development.

In this survey that covers the tools and methods used for
vulnerability research on drivers, the following questions are
addressed :

• Is the current automation of vulnerability research effec-
tively developed?

• What can be its limitations?

A. Standards for driver development

Drivers are complex objects capable of executing code
with kernel privileges. In an attempt to protect Windows
users, Microsoft has devised two models on which to base
driver development: WDM (Windows Driver Model) and WDF
(Windows Driver Framework). Manufacturers, who own their
own drivers, must follow one of these two models in order to
be validated. This validation involves WHQL (Windows Hard-
ware Quality Labs), the laboratory in charge of certifying the
quality of drivers intended to run on Windows. Unfortunately,
this verification is not enough to protect Microsoft’s operating
system. Various techniques involving reverse engineering and
vulnerability scanning have highlighted the weaknesses of this
certification method.

B. Reverse engineering and analysis tools and methods

Nowadays, there are numerous tools available for reversing
various kinds of software, whether it’s drivers, executables,
DLLs, ... This project focuses on the analysis of drivers in
order to find vulnerabilities or configuration flaws within
it. After reading the scientific literature, these tools can be
classified into four categories. It will help to find out what
tools can be used for this project :

1) The first type of tool are well-known pure reverse
engineering tools such as IDA, Ghidra and angr. These
tools are excellent for reverse engineering but do not
easily provide added value for automated vulnerability
research on their own. IDA Pro could be used for
scripting, but a as a research project, something
reproducible is preferable, so proprietary tools are not
in the scope. However, Ghidra or Angr can be used for
manual verification of an automated method. These two
tools are open-source, and a script can interface with
them.

2) The second type of tool is turnkey automated analysis
tools that use reverse engineering. Those are often
open source. The scientific literature gives us some
interesting examples such as POPKORN [4]. It is
a light- weight framework that harnesses the power
of taint analysis and targeted symbolic execution to
automatically find security bugs in Windows kernel
drivers at scale. Moreover, it detects when unsanitized

user input (the source) can reach functions that provide
access to critical kernel resources (the sinks). This tool
comes with a specific method of analysis explain before,
and it seems to be one of the best tools found so far.
Other researchers do not work in an academic context
and communicate their work in blog articles. One in
particular, Voidsec (a.k.a. Paolo Stagno), publishes its
reverse engineering tools on an open-source Github.
The IDA databases for each of he’s public analyses can
also be found there. [17]. Another tool called RevNIC
reverses a driver’s logic to reproduce it and load it into
a chosen operating system and then tests its security
[3]. It’s a unique tool but it’s not open-source.

3) The third type of tool is an implementation of a security
qualification procedure owned by private companies
like Microsoft’s Static Driver Verifier tool. Popkorn
was created in response to the inefficiency of this
tool [4]. In fact, SDV only supports a set of specific
assertions, rules, and tests that focus on the correct
usage of Windows APIs. Consequently, the applicability
of these tools is restricted to a limited subset of security
vulnerabilities [4]. Another paper studied SDV and said
that they tested the tool and found 12 false positives on
65 coding errors within drivers. They also found some
lack of analysis within this tool and improved it [1].

4) The forth type of tool are fuzzers. They are used for anal-
ysis of driver behavior such as IOCTL Fuzzer. This one
dynamically captures all DeviceIoControl requests to
the testing driver by hooking the NtDeviceIoControlFile
function in kernel mode [9]. It could be compared
to a Wireshark for driver. But this tool do not cover
all DeviceIoControlCodes for drivers using dynamic
allocated memory. He can’t pass through an anti-reverse
system and the tool must be upgraded for being more
accurate and powerful to deal with this problem.

C. Critical analysis

All the methods and tools mentioned above seem promising
and are showing conclusive results. Most of them come with
turnkey tools. Next task is to be able to test and appropriate
these tools, starting with the most recent: Popkorn. However,
according to the creators of Popkorn, their tool is not perfect.
In fact, like all the tools presented, it only focuses on drivers
that follow the Windows Driver Model and not the Windows
Driver Framework. The latter is the model recommended by
Microsoft, but porting drivers from one model to another can
be a slow process. Finally, Popkorn was developed for the
release of the research paper and has not been updated since.

Finally, note that the automation of reverse engineering
to search for vulnerabilities is a subject that is gaining in
importance over the years. Numerous tools are being produced
and formal methods are emerging. On the other hand, the issue

of drivers is complex and there is still a long way to go to
achieve “complete code coverage”.

V. GROUP ORGANISATION

For this project, - ------------------ was chosen as the project
leader, as she has a more solid experience in reverse engi-
neering and came up with the idea for the project in the
first place. Jean has been appointed as internal and external
relations and communications manager. Finally, --- ------ and
---------- are both part of the project team. Everyone is involved
in the successful development of the project and have the same
technical skills. As for time management, we set up a Gantt
chart to give us an overall view of the project’s progress. We
also set up a time-tracking file showing our estimated and
actual worked hours.

VI. POPKORN

Taking Popkorn as a starting point, the solution analysis will
be conducted as follows :

1) Exact reproduction of the results presented in the re-
search paper: this will validate the tool’s operation as
presented by its developers;

2) Update the test environment: make sure the tool isn’t
obsolete, and repair it if necessary;

3) Update the driver dataset: select new drivers to analyze
for the research;

A. Reproduction of the initial POC

Popkorn’s developpers supplied their code and dataset on
Github, so it’s mainly open-source. However, they used a
downloader to gather a significative amount of drivers from
softwares on the Internet and did not provide it. For the
purposes of this paper, the aim was only to recover the metrics
given, so the 271 drivers supplied (out of X) were sufficient.
The table below shows the results obtained when the test was
reproduced exactly.

Original test New identical test
Number of drivers used 212 271

Unique bugs found 38 37

First of all, the driver dataset does not include 212 drivers
as announced by the researchers in their research paper, but
271. Moreover, among these 271 drivers, the tool qualified 37
vulnerable drivers, not 38. However, the number of vulnerabil-
ities found in these 37 drivers is not specified, so it’s possible
that several vulnerabilities are present in the same driver. The
tool showed 60 timeouts on drivers, hindering the analysis of
60 drivers for the final metrics.

B. Test environment update

Although the results are slightly different from those ex-
pected, the tool as presented in 2022 actually works. It is now
appropriate to update the entire test environment to ensure
that Popkorn is still functional, a year after its development.
The table below shows the results obtained with the following
technical updates :

• Ubuntu updated from 20.04 to 22.04 ;
• Python updated from 3.8 to 3.12 ;
• virtualwrapper replaced by python3.12-venv ;
• Python libraries updated (angr, ipython, ipdb) ;

Original test New updated test
Number of drivers used 212 271

Unique bugs found 38 38

C. Creation of a new dataset

This part of the Popkorn analysis is still in progress, as the
WDF drivers are being examined in greater depth. To do this,
Popkorn can be re-run on WDF drivers to see how it behaves,
although it’s not suitable at the moment. WDM and WDF
drivers need to be differenciated so that Popkorn’s code can
be adapted to suit this research. To do this, a number of WDF
drivers will be collected, if possible device drivers, and why
not their WDM version if it exists, in order to compare results.

For the time being, all the drivers located in
C://Windows/System32/drivers were collected from one
of the team computer and gave them to Popkorn. The
following table shows the results.

Numbers of drivers 454
No sinks found 141

Timeouts 9
Not vulnerable 304

Looking at the results, it seems that at least 445 drivers out
of the 454 ones are safe from the vulnerabilities searched by
Popkorn. The 9 remaining ones are the timeouts. But note that
Popkorn is meant to search WDM drivers only. It is therefore
necessary to identify the WDF drivers to measure the blind
spot that Popkorn fails to take into account.

VII. AUTOMATED ANALYSIS OF WDF DRIVERS

A. Detection of WDF drivers

The first step in analyzing WDF drivers is to differentiate
them from the others. In Popkorn’s source code, a
function named ”find driver type” differentiates WDM
drivers by looking for the ”IoCreateDevice” API call. The
”IoCreateDevice” API is not present in WDF drivers. Instead,
the function was modified to find the ”WdfVersionBind” API,
which serves as a wrapper for the DriverEntry function, to
bind the code to the correct version of the WDF library.

Then, the script ran on the new dataset of 454 drivers, using
only the modified Popkorn function to differentiate WDM,
WDF and other drivers. Out of 454 drivers, 169 are WDM
and 131 are WDF (leaving 154 drivers of another type). This
mitigates the previous results, as only 169 are WDM drivers,
the only type of driver supported by Popkorn at the moment.

def find_driver_type(proj):
iocreatedevice_addr =

proj.loader.find_symbol("IoCreateDevice")↪→

wdfversionbind_addr =
proj.loader.find_symbol("WdfVersionBind")↪→

driver_type = ""
if iocreatedevice_addr:

print("Found WDM driver: ",
hex(iocreatedevice_addr.rebased_addr))↪→

#logging.info("Found WDM driver: %s",
hex(iocreatedevice_addr.rebased_addr))↪→

driver_type = "wdm"
elif wdfversionbind_addr:

print("Found WDF driver: ",
hex(wdfversionbind_addr.rebased_addr))↪→

#logging.info("Found WDF driver: %s",
hex(wdfversionbind_addr.rebased_addr))↪→

driver_type = "wdf"
else:

print("Different driver type detected..")
#logging.info("Different driver type

detected..")↪→

return driver_type

B. Exploration of TAU methodology for vulnerability research

During this research, in octobre 31th 2023, an article
was posted on the VMWare blog by Takahiro Haruyama,
describing it’s new tool named TAU. TAU is a tool
based on IDA Pro scripts that’s meant to automate the
hunt of vulnerabilities on WDM and WDF x64 drivers.
Unfortunately, even though it is open-source, TAU is not
available for everybody because of the IDA Pro requirement.

However, as Takahiro Haruyama explains it’s tool’s
functions, a clear methodology for hunting vulnerabilities in
WDF drivers arises. This methodology is different than the
one used by Popkorn for WDM drivers because of the WDF
specificities. TAU was also developed to fill the potential
gaps in Eclypsium’s ScrewedDrivers tool, one of the few to
take WDF drivers into account. Indeed, with Popkorn and
ScrewedDrivers both using symbolic execution with Angr,
they share the same flaws (”path explosions, false negatives
and other unknown errors”). According to M. Haruyama, a
full automation isn’t likely to work by completing Popkorn
and, even with TAU, a manual verification is still necessary
because of WDF complexity.

With this paper, artifacts with an full explanation of TAU
methodology presented in Figure 1 for the detection of
MmMapIoSpace vulnerabilities are presented, with an IDA
database of stdcdrv64.sys. This Intel WDF driver is used as
an example in the VMWare article, with a PoC for firmware
deletion on Takahiro Haruyama’s github page. The targetted
API, MmMapIoSpace, is a function of the Windows Memory
Management subsystem. It is used by drivers to access the
memory of the devices to which they are linked. If the
behavior of this API were modified by a hacker, it could

Fig. 1. TAU methodology to detect vulnerable MmMapIoSpace API

access unauthorized memory spaces, cause denial-of-service,
execute code, and more.

Those steps were reproduced manually first and detailled in
the artifacts, in order to confirm the methodology effectivness.
With time, this could be implemented in Popkorn.

VIII. CONCLUSION

In this paper, the goal was to design an automated
reverse-engineering methodology for WDF-type Windows
drivers, more specifically for vulnerability scanning. Research
is underway for the automation of vulnerability scanning in
WDM drivers, but the norm now would be to port drivers to
WDF.

To do so, this paper explored the pivotal role that kernel
drivers play as intermediaries, granting user-mode applications
access to the underlying hardware, often operating at the
highest privilege level. After conducting a detailed state of the
art, a tool linked to a method published by researchers was

chosen, to understand the automated reverse engineering of
Windows drivers. This tool, Popkorn, however, was not suited
to dealing with WDF drivers, and the only other complete
tool discovered to do this was not usable by the general public.

However, this second tool named TAU, a IDA Pro script,
was open-source and The next task set is using the taint anal-
ysis methodology behind Popkorn to develop a methodology
adapted to the search for vulnerabilities in WDF drivers. This
research is meant to emphasize the vital need for robust secu-
rity protocols in the development and assessment of drivers.
As it progresses, it is crucial to acknowledge the persistent
challenges posed by the ever-changing cybersecurity landscape
and work towards fortifying the safeguards surrounding kernel
drivers, all while remaining mindful of the wider context of
reverse engineering methodologies.

REFERENCES

[1] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob
Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and
Abdullah Ustuner. Thorough static analysis of device drivers. ACM
SIGOPS Operating Systems Review, 40(4):73–85, October 2006.

[2] Vivek Bhardwaj, Vinay Kukreja, Chetan Sharma, Isha Kansal, and Renu
Popali. Reverse Engineering-A Method for Analyzing Malicious Code
Behavior. In 2021 International Conference on Advances in Computing,
Communication, and Control (ICAC3), pages 1–5, December 2021.

[3] Vitaly Chipounov and George Candea. Reverse engineering of binary
device drivers with RevNIC. In Proceedings of the 5th European
conference on Computer systems, pages 167–180, Paris France, April
2010. ACM.

[4] Rajat Gupta, Lukas Patrick Dresel, Noah Spahn, Giovanni Vigna,
Christopher Kruegel, and Taesoo Kim. POPKORN: Popping Windows
Kernel Drivers At Scale. In Proceedings of the 38th Annual Computer
Security Applications Conference, pages 854–868, Austin TX USA,
December 2022. ACM.

[5] Matt Hand. Methodology for Static Reverse Engineering of Windows
Kernel Drivers, May 2023.

[6] Takahiro Haruyama. Vulnerable driver research tool, result and exploit
PoCs, October 2023.

[7] Dan Mellinger. Hunting Vulnerable Kernel Drivers, October 2023.
[8] Byungho Min and Vijay Varadharajan. Design, implementation and

evaluation of a novel anti-virus parasitic malware. In Proceedings of
the 30th Annual ACM Symposium on Applied Computing, pages 2127–
2133, Salamanca Spain, April 2015. ACM.

[9] Tao Ni, Zhongxu Yin, Qiang Wei, and Qingxian Wang. High-Coverage
Security Testing for Windows Kernel Drivers. In 2012 Fourth Interna-
tional Conference on Multimedia Information Networking and Security,
pages 905–908, November 2012. ISSN: 2162-8998.

[10] Enrique Nissim. Reverse Engineering and Bug Hunting on KMDF
Drivers.

[11] James S. Okolica and Gilbert L. Peterson. Windows driver memory
analysis: A reverse engineering methodology. Computers & Security,
30(8):770–779, November 2011.

[12] Denis Pogonin and Igor Korkin. Microsoft Defender Will Be Defended:
MemoryRanger Prevents Blinding Windows AV. 2022.

[13] Ariella Robison. Screwed Drivers - Signed, Sealed, Delivered, August
2019.

[14] tedhudek. Kernel-Mode Driver Architecture Design Guide - Windows
drivers, March 2022.

[15] tedhudek. Differences Between WDM and WDF - Windows drivers,
February 2023.

[16] tedhudek. Windows Driver Frameworks - Windows drivers, February
2023.

[17] VOIDSEC. Windows Drivers Reverse Engineering Methodology, Jan-
uary 2022.

	Introduction
	Background
	Reverse engineering
	Windows kernel driver

	Subject's choice motivation
	State of the art
	Standards for driver development
	Reverse engineering and analysis tools and methods
	Critical analysis

	Group organisation
	Popkorn
	Reproduction of the initial POC
	Test environment update
	Creation of a new dataset

	Automated analysis of WDF drivers
	Detection of WDF drivers
	Exploration of TAU methodology for vulnerability research

	Conclusion
	References

